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ON TURBULENCE CAUSED BY THERMAL INSTABILITY
By S. CHANDRASEKHAR, F.R.S., Yerkes Observatory

(Recetved 18 September 1951)

In this paper a statistical theory of turbulence in an incompressible fluid caused by the joint
effects of gravity, and thermal instability, is developed. The mathematical theory is based on the
equations of continuity and heat conduction and the Boussinesq form of the equations of motion
in which the variations of density (resulting from the variations in temperature) are taken into
account only in so far as they modify the action of gravity. By restricting oneself to a portion of
the fluid far from the bounding surfaces one can treat the turbulence as approximately homo-
geneous and axisymmetric and use the theory of axisymmetric vectors and tensors recently
developed by the writer (Chandrasekhar 1950@). A number of correlations between the various
field quantities (such as the velocity components, fluctuations in temperature, etc.) at two different
points in the medium are defined; and a closed system of equations for the defining scalars are
derived for the case when the non-linear terms in the equations of motion and heat conduction can
be neglected and a constant mean adverse temperature gradient is maintained. Under stationary
conditions when the time derivatives of the various correlations are zero, there is an exact balance
between the dissipation of kinetic energy by viscosity and the liberation of potential energy by
gravity.

A fundamental set of solutions of the equations governing stationary turbulence is obtained;
these solutions, varying periodically in the vertical direction, enable a generalized Fourier analysis
of the various correlation functions. According to these solutions, a Fourier analysis of correlations
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such as #,(0) #;(z) of the vertical velocities at two points directly above one another and separated
by a distance z, cannot include wave-lengths less than a certain minimum value depending on the
physical parameters and on the temperature gradient maintained. We may thus speak of a smallest
size for the eddies. Further, it appears that the field of turbulence can be analyzed into two modes
characterized by the kinetic energy being confined, principally, to the vertical or to the horizontal
direction.

1. INTRODUCTION

In nature the most common cause for the occurrence of turbulence is thermal instability
which results from the joint effects of gravity and a superadiabatic temperature gradient.
When turbulence occurs under these conditions the situation generally is that the amount
of heat that has to be transported requires the surpassing of the adiabatic temperature
gradient. Thus if — | d77/dz | is the temperature gradient that is present in a gaseous plane-

/ |\
A B

2 parallel atmosphere, the condition that the adiabatic gradient be exceeded is (cf. Brunt 1939)

—

olm d7T gocT 1

e =9} dz ¢, ’ } . ( )
)

E 8 where g denotes the value of gravity, « the coefficient of volume expansion, ¢, the specific

=w heat at constant pressure and 7" the temperature on the absolute scale. The understanding

of turbulence initiated by such thermal instability is clearly a matter of some importance.
It is the object of this paper to examine how far the methods currently employed in the
statistical theories of turbulence can be extended to the treatment of this problem. The
problem has an added interest in that in treating it we must explicitly take into account
the source from which turbulence derives its energy: an aspect of the general turbulence
problem which has not, so far, received much attention.
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358 S. CHANDRASEKHAR ON

It is apparent that a full discussion of turbulence caused by thermal instability allowing
for compressibility, etc., will be a very difficult one. However, a theorem of Jeffreys (1930)
enables us to treat the problem under somewhat simplified conditions: For, the theorem
of Jeffreys states that when the density in the system does not vary greatly, the case of an
incompressible fluid with the higher temperature on the under side is formally the same as
a compressible fluid with a temperature gradient in excess of the adiabatic. Thus, an adverse
temperature gradient (i.e., one which is negative if g acts in the direction of decreasing z) in
an incompressible fluid is equivalent to an adiabatic excess (d7/dz+gaT/c,) in a com-
pressible fluid. Moreover, when treating an incompressible fluid in which the temperature
is variable, we can often neglect the variations of density (caused by thermal expansion)
except in so far as they modify gravity. Quite generally, the circumstances under which
such a neglect is justified, have been discussed by Boussinesq (1903); and Rayleigh (1916)
and Jeffreys (1926, 1928) have shown that it is justified in problems of the type we shall
consider. Indeed, the particular problem we shall treat is closely related to the one in-
vestigated by Rayleigh and Jeffreys in their papers referred to, namely the stability of a
layer of fluid heated below. (For a general account of these investigations, see Brunt (1939,
chaps. XI and XII) and Wasiutynski (1946); the former discusses the problem from the
meteorological and the latter from the astrophysical point of view.) Rayleigh, who initiated
the study of this problem with a view to interpreting the experiments of Bénard (19oo, 1go1),
showed that a liquid might be in stable equilibrium even if its density increases upwards
(as would be the case when an adverse temperature gradient is present) provided its

- viscosity and heat conductivity are sufficiently high. More particularly, Rayleigh showed
that a layer of liquid of height H with a free surface at both top and bottom with a
temperature maintained constant over both will first become unstable when

g2l Bl g 27 '
where f = — | f | denotes the vertical temperature gradient and « and v are the coefficients

of thermometric conductivity and kinematic viscosity, respectively. Rayleigh further
showed that when the quantity on the left-hand side just exceeds 277*/4 convection with
a cellular pattern will set in; this is in qualitative agreement with the experiments of
Bénard. In extending Rayleigh’s discussion of the problem when one (or both) of the
bounding surfaces is (are) not free Jeffreys (1926, 1928) derived a general differential equa-
tion governing the problem and showed how in these cases also the critical value of
g | f| H*/kv at which instability first sets in can be determined (in this connexion see also
Low (1929)). _

Experiments by Schmidt & Milverton (1935) carried out with the explicit purpose of
putting the Rayleigh-Jeffreys criterion to a quantitative test have shown that for the
predicted temperature gradient (for given values of the other parameters) instability does
set in. Later experiments by Schmidt & Saunders (1938) have, however, indicated that
while cellular convection of the type predicted (and first observed by Bénard) does set in
when the temperature gradient given by the Rayleigh-Jeffreys criterion is exceeded, the
convection changes. from a ‘cellular’ to a truly ‘turbulent’ pattern for a much higher
temperature gradient. Schmidt & Saunders themselves believed that the transition from
‘cellular’ to ‘turbulent’ convection is a sharp one; but an examination of their experi-
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TURBULENCE CAUSED BY THERMAL INSTABILITY 359

mental points would not seem to support this latter conclusion as well established ; this can
be seen from plotting their experimental points in figure 2 without their ‘guiding’ lines.
Also, there would appear to be theoretical difficulties in accepting the conclusion that the
transition between the two types of convection is a sharp one (see § 11 below). In any case,
it is clear that the condition for the occurrence of turbulence when an incompressible fluid
is heated from below requires careful examination; it is in part the object of this paper.

2. THE EQUATIONS OF BOUSSINESQ; THE DIFFERENTIAL EQUATION
OF JEFFREYS; AND THE CRITERION OF RAYLEIGH ‘

The equations of motion and heat conduction appropriate to the problem are

du; i} _dp IV 9
PW+/’9—xj (wu;) = - (9—%4’/’5;1 +pv V2 (3)
oT oT
and W—l“u]a_x] == KVZT, (4:)

where here and in the sequel summation over repeated indices is to be understood. In
equation (3), V denotes the gravitational potential and the rest of the symbols have either
been defined or have their usual meanings.

As we have already stated in § 1, we shall take into account the variation of density only
in so far as it modifies the effect of the external field. Thus, in equation (3) we replace p
which occurs in front of dV/dx; by ~
p = po(1—aAT), (5)
where « denotes the coefficient of volume expansion, p, the density corresponding to a
certain mean temperature 7, and AT is the deviation of the local temperature from 7:

AT =T—-T,; (6)
and we regard p occurring elsewhere in equation (3) as a constant equal to p,. On these
assumptions equation (3) becomes

du; 0 o d (p av )

7??+3_ch (w;u;) _—-:(;):)— )—aAT(?_xi+VV u;. | (7)

With the variation of density due to thermal expansion allowed for in this manner we,

from now on, treat %; as a solenoidal vector:
Ou; _
ox;,

The approximations represented by equations (7) and (8) are those first introduced by

Boussinesq (1903).

When the external field is that due to the action of gravity, we can write

v
Fi —gA; and V=—glx, (9)
Z
where A is a unit vector in the direction of the vertical. With the foregoing substitution,

equation (7) becomes

0. (8)

du; 0 __d(p 9
g ) ==, (p0+ o) + AT+ V2, (10)
where we have written y = ga. (11)

46-2
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360 S. CHANDRASEKHAR ON
Returning to the equation of heat conduction (4), we shall suppose that a constant mean
temperature gradient f = — | £ | is maintained in the direction of A by an external agency
and that we can write T— Tyt flyx, 10, AT = x40, (12)
where 77 is a constant (cf. equation (6)),
p= G b (13)

and ¢ is the deviation of the temperature from its local mean value, 7+ fA;x;. Inserting
(12) in equations (4) and (10), we have

du; 0 _ Ow )
—(77+0_acj (wu;) = —9_%+7‘9/1i+VV Ui (14)
a0 H o :
and %Jrﬂxlj uj+ujﬁ_ac_j = V20, (15)
where, for brevity, we have written
w = f(—)—i—g/ljxj—%y/)’/li/ljxixj. (16)

We shall now suppose that u; and 0 are small quantities of the first order and that we can
ignore products and squares of them. On this approximation equations (14) and (15)

reduce to ou. 0w
Wz_ﬁﬁ—yﬁ/liqu% (17)
06 ) 9
and Fr —BAju;+«kV20. (18)
Taking the divergence of equation (17) and remembering that ¥, is solenoidal (cf. equation
(8)) we find that 20
Vzw:ﬂfﬁx_j' (19)

Equations (17) to (19) provide the basis for the Rayleigh-]Jeffreys theory; and Jeffreys’s
differential equation can be derived from them in the following manner:

d J | d
29 w2} (9 ov2) g — —v2 2 _uve) AL
V ((% VV)(Bt KV)H—— V (315 vV )ﬂ/lju]

2 2
- Vz[—mj( —@% +ymj)] AT AR AR

— azﬁ 2
- ﬁ‘y(/li/lj s a) . (20)

According to Rayleigh and Jeffreys the condition for marginal stability is obtained by setting
d/0¢t = 0 in the equations of motion and heat conduction; in which case equation (20)

reduces to

T
Vo0 =T (0 5o axj~vza) . (21)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 361
If A is chosen to be in the z-direction, A = (0, 0, 1), and equation (21) becomes
6n Py (0%*0 026‘)
Voo = KV ((9x2+3y (22)
This is Jeffreys’s differential equation (1926, equation (13)).
If in equation (22) we let 0 = Z(z) sina, x sina,y, (23)
where «, and «, are constants, we find
N8 | V 2 ’
(dz a)Z-— 27, (24)
where , a? = af+a2. (25)
Equation (24) admits a solutlon of the form
Z = Zysinaz (26)
21 42)3 :
where Z is a constant, provided (e ?:2“ ) = |ﬂ | )'. (27)

For a given a the left-hand side has a minimum value which it attains for a? = La?.
According]

y 1A 7’> 2744 (28)
Therefore, for a given | f| periodic fluctuations of temperature in the z-direction can exist only when
the wave-length, A, of the fluctuation is greater than a certain minimum wave-length, A, , given by

A4 = 1087 (29)

lﬂl

This is essentially Rayleigh’s criterion (cf. equation (2)*).

3. VARIOUS CORRELATIONS FOR DESCRIBING TURBULENCE
CAUSED BY THERMAL INSTABILITY

We shall consider a fluctuating (i.e. a turbulent) field of velocity (z;) and temperature ()
governed by equations (17) to (19). In order to describe such a field we shall introduce

various correlations such as 64 and u,u; u;, between the simultaneous values of the field vari-
ables at two different points P(x;) and P’(x) in the medium. In general, such correlations
are vectors or tensors which require for their definitions a number of scalar functions. The
number of such scalar functions required can be reduced considerably by assuming that
the turbulent field is statistically homogeneous and furthér satisfies certain invariance
properties for reflexion and rotation. For example, in homogeneous isotropic turbulence
the number of scalars required for the definition of a general second-order tensor is two
(cf. Robertson 1940) ; the number is further reduced to one if the tensor (like #;u]) is solen-
oidal in its indices. In discussing turbulence in the framework of equations (17) to (19),
we clearly cannot assume that it is homogeneous and isotropic: the explicit appearance of
a preferential direction (A) in the basic equations would already make this impossible. On

* The ratio 16 in the numerical factors of equations (2) and (29) arises from the fact that when a layer of
liquid of height, H, is considered the lowest ‘mode’ (compatible with the top and bottom surfaces being free)
is obtained when the fluctuation in the z-direction is given by sin (nz/H), i.e. when a =#/H; on the other
hand, we have set ¢ =27/A as the definition of the wave-length.
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the other hand, the assumption of axisymmetry in the sense described by Batchelor (1946)

‘and Chandrasekhar (19504, referred to hereafter as A.T.) would be compatible with the
equations though it cannot be concluded on that account that the assumption of axi-
symmetry is necessarily justified. Indeed, one can object to regarding the various correla-
tions as axisymmetric vectors and tensors (when they are not scalars) with representations
as given in A.T., on the ground that the assumption of homogeneity is involved; for a finite
layer of fluid the assumption of strict homogeneity clearly cannot be defended. But if we
restrict ourselves to regions in the fluid which are far from the bounding surfaces, we may
expect that the assumption of axisymmetric turbulence may be approximately realized.
This assumption will be made in this paper.

We shall assume then, that the various correlations which we shall find it necessary to
introduce are, when they are not scalars, axisymmetric vectors and tensors in the strict
sense defined in A.T. Correlations in which one of the field variables is a velocity com-
ponent, %;, will be solenoidal in that index; the corresponding vectors and tensors can then
be defined uniquely in a gauge-invariant way in terms of certain defining scalars as described
in A.T., §§ 3 to 5. Thus, an axisymmetric vector, L, solenoidal in ¢ can be expressed in terms
of a single defining scalar, L, which is a function only of 7 (the distance between the two points
considered) and g (the direction cosine of the angle between the directions § (§; = x; —x;)
and A) in the form (A.T., equation (26)),

L; = —(muD,+D,).LE+ (D, +1uD ,+-2) LA, (30)

where D, and D, are the differential operators (A.T., equations (6))
d 1
p, =10 £ g p,-17 (31)
2 du rdu .
Similarly, a tensor like #;u; which is symmetrical and solenoidal in its indices can be defined
in terms of two scalars @, and @,; the explicit representation is given in A.T., equations
(48) to (50). _
The various correlations which we shall find it necessary to introduce are listed in table 1
together with their defining scalars.

TABLE 1. VARIOUS CORRELATIONS AND THEIR DEFINING SCALARS

defining
correlation scalar ~ remarks

06" =0 ® an even function of r and x

Oy =L; O'u; =LY 0, 4 from homogeneity, L{P(A) = — LP(—2A); {,(r, w) =ly(r,—u)
LOu;+0'u) = A, A A =3(l, +1,); an even function of » and u

W6u,—0'w;) = L; L L =1(l,~1,); an odd function of r and x

0o —0a') = d ® an odd function of r and g

0w +0a') =¥ v ¥ an even function of 7 and g; actually ¥'=0 (cf. equation

(48))

wuj = PP w'u, = PP D> e from homogeneity, P’ (x) = — PP (—=2); p\(r, 1) = (1, — 1)
You,—o'u) =11, IT IT = L(p,—p,) ; an odd function of  and x

You,+w'u;) = P; P P = L(p,+p,); an even function of r and p

uu] = Q) Q1 @, @, and @, even functions of r and u; for explicit representa-

tion of tensor, see A.T., equations (48) to (50)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 363

4. EQUATIONS GOVERNING THE SCALARS
We shall now derive the equation governing the various scalars introduced in the
preceding section.
Multiplying equation (18) by ¢’ (the value of § at x;) and averaging we obtain

0’ zf — A, 0'u;+ V200 . ‘ - (32)
Interchanging the primed and the unprimed variables in this equation, we have
0% — 0,5 1 T
i —pA; Ou; +« . (33)
Now adding equations (32) and (33), we obtain (cf. table 1)
72 — 241, A2, O, (34)
where (cf. A.T., equation (31))
0% 20 1429 2ud
M= e TR e
=r2D,,+2muD,,+D,, +3D, (35)

is the operator defining the axially symmetric wave equation in three dimensions; quite
generally, the corresponding operator in 7z dimensions is

_ 0 n—10 1—-p?0*> n—1 0
A, wt T n T ur 12 ﬂbﬁ

= 12D, +2muD,,+ D, +nD,. (36)
From the expression for A; in terms of its defining scalar A (cf. equation (30)) we find

LA =—8(ruD,+D ) A+2A;4;,(r*D,+ruD,+-2) A

= [?*(1—#*) D, +-2] A (37)
Thus, equation (34) becomes
99 _9p(1—2) D,+2] A+ 2cA, . (38)

Next multiplying equation (17) by ¢’ and averaging we obtain

,(9u ad —3 == YT ,

7 ¥ —(Txiwﬁ +yA,00" +vV20'u,. (39)
Similarly, considering equation (18) in the pi‘imed variables, multiplying by # and
averaging, we obtain

9 ;
Ui ar = —PA; u;u; —|—/<V249 (40)
Adding equations (39) and (40) and remembering that d/dx; = —d/d¢,, we obtain
J nr,. a 7 20'u
atﬂu 0§ @b’ -+, O—pA; Qlj—l—(K—l—V)Vﬁ (41)
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364 S. CHANDRASEKHAR ON
Interchanging the primed and the unprimed quantities in this equation, we have
075 0 = 7
Ezﬁ“i ==%" 0+y4,0—FR; Qi+ (k+v) V20u;, (42)

where we have made use of the symmetry of @; in its indices. Now adding and subtracting
equations (41) and (42), we obtain (cf. table 1)

ﬁA (2?4‘ A ®) —hk; Qy+{x+v) V2A, (43)
and 336 (g +c+v) V2L, e

The equations governing ® and ¥ which occur in equations (43) and (44) can be
obtained by multiplying equation (19) in the primed (or the unprimed) variables and
multiplying by 6 (or §’) and averaging; thus

Aol = —ylj% and A;@’0 =+, Jg? - (45)

Addihg and subtracting these equations we obtain
AW =0 (46)
and Ay = —7, gf —y(uD,+D,) 6. | | (47)

Equation (46) does not allow any non-trivial solution which is bounded everywhere and
vanishes at infinity. Accordingly, we shall write

Y=o0. (48)*
. dL, :
Equation (44) now becomes n = (k+v) V2L, (49)

The defining scalars of the solenoidal axisymmetric vectors which occur on either side of
this equation are (cf. A.T., equations (29) to (31)):

JL

¥ and A;L. | (50)
Equation (49) is therefore equivalent to the scalar equation,

L (et AL 1)

This is the equation of heat conduction for an axially symmetric distribution of matter in
five-dimensional space (cf. Chandrasekhar 19505).

Before we can write the equivalent scalar equation of (43), we must find the defining
scalars of the terms besides V2A, on the right-hand side of this equation. From the explicit
expression for Q;; given in A.T., equations (48) to (50), we find on contraction that

;,Q; =+ (D, +D,) @ &— (*D,+1uD,+2) Q, . (52)

* We can conclude this also from the solenoidal character of d¥'/0§; which is required by equation (44).
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"The defining scalar of A; Q,; is, therefore, —@,. Considering next the term (®/d¢;+yA, ®)
we first observe that this must be solenoidal in ¢ (since all the other terms in equation (43)
are solenoidal in ¢) and, therefore, must be expressible in terms of a defining scalar X in

the form D
. e +94,0 = — (ruD,+ D) X§+ (2D, +ruD,+2) XA,. (53)
On the other hand, gg)—l—yl © = D, 0+ (D, P+y0) A, (54)
From equations (53) and (54) we conclude that
D,®=—(uD,+D,) X (55)
and D,®+y0O =+ (2D, +ruD,+2) X. (56)

It can be readily verified that equations (55) and (56) represent the general solution
(bounded everywhere and vanishing at infinity) of equation (47). Thus, by using equations
(55) and (56) in conjunction with the identity established in A. T, equation (14), we obtain
(ruD,+D,) (D, ®+y®) = (ruD,+D,) (2D, +muD ,+2) X
= (2D, +muD ,+3) (ruD,+D,) X, (57)
or (ruD,+D,) (D, ®+y0) = — (r>D,+1uD,+3) D, ®. (58)
Rearranging this last equation, we recover (47).

Returning to equation (43), we can now write down the defining scalars of the various
axisymmetric solenoidal vectors which occur in this equation. They are

Equation (43) is therefore equivalent to
I X4 PQu+(k-0) AA, (60)

where X is defined implicitly through equations (55) and (56).
An equation directly relating the scalars X and ® can be obtained as follows: Operating
equations (55) and (56) by D, and D,, respectively, we have

D,,®=-D,(uD,+D,) X =—(nD,,+D,+D,) X (61)
and D,,®+yD,® = D,(**D,+muD,+2) X
= (rzDrr—}—r,qu—i— 4D,) X; (62)

and eliminating D, ® from these equations, we obtain
A X =9D,0. (63)
Finally, we can derive an equation governing the rate of change of @; by treating equa-
tion (17) in the usual fashion by multiplying by u;, averaging the resulting equation, etc.

In this manner we find ) Q

i 5,1 20v2Q), (64)

where S, = (ag ot +7; au) (05 — 9\, ) (65)

Vor. 244. A. 47
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From equation (64) it is evident that since @;; and V2@),; are both symmetrical in their
indices and solenoidal, the tensor \S;; must also be symmetrlcal in its indices and soleno1da1
S;; must therefore be definable in terms of two scalars, say, .S} and S,.

If @, and @, are the defining scalars of @; (cf. table 1) then those of V2@Q),; are (cf. A.T.,

equation (61‘)) A;Q, and A;Q,+2D,,0Q;. (66)

The equivalent scalar equations of (64) are, therefore,

% s, rus @ (67)

and ‘7Q2 = S+ (A, Q2+2DWQ) (68)

It remains to express S; and S, in terms of the other scalars of the problem. For this
purpose consider first the tensor (cf. table 1)

0PV
8§ 8§

Now PV is solenoidal in j with a defining scalar p, (cf. table 1) and according to A.T.
equation (77) the defining scalars of dP{V/d¢; are

—*(TﬂDr—i-Dﬂ)ﬁl, D,u<r2Dr+rluD,u+2)pl and Dr(72Dr+rﬂDﬂ+2)pl' (70)

ou +yA; Hu = +yA, LD, (69)

To determine the defining scalars of ; L{" we proceed as follows: First we verify that
NLY = — & (ruD,+ D) Iy +A,A,(r*D, +1uD ,+-2) [, (71)
is the curl with respect to the second index of the skew tensor (cf. A.T., equation (39))
L A€, 06 = L (A €3, 46 1 A — €165 | (72)

In accordance with A.T., equation (40), we must replace [, 7u¢,;, A, on the right-hand side

ijk
f(72) b
of (72) by D, (1) & 6un A+ D 1) s A (73)
The tensor A, LV is therefore the curl with respect to the second index of the skew tensor
_ -1 €ijk§k+Dr(rﬂll) zzm’1 Ent [ll +D ,(ruhy) ] A; €4, A5 (74)
its defining scalars are, therefore,
—ly, D, (ruly)+1 and D, (ruly). (75)

Combining (7 0) and (75), we observe that the defining scalars of s;; are
—(uD,+D,) py—7rl, D, (D, +muD,+2) py+yl +yD,(rul,)
and D, (r*D,+ruD ,+2) p,+yD,(ruly). (76)
Now from the properties (cf. table 1)
wu(r, +p) = —@'u;(r, —p) and Gul(r, +p) = —0'u;(r, —p), (77)

it follows that Sy = 8i(+2A) +s;(—A). (78)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 367

From the symmetry and the solenoidal character of S; in its indices we can infer that the
same must be true of s;; (cf. remarks following A.T., equation (144)); and this requires that
among the defining scalars of s;; the following relation holds (A.T., equation (47)):

D, (2D, +1uD,,+2) py D, () — — D, [(1uD,+D,) pr +71]. (79)
On further simplification the foregoing equation reduces to
Aspy =—y(ruD,+D,) 1. (80)
This last relatlon between p; and /, also follows from wr1t1ng, in terms of the defining
scalars, the equation AL ‘
V2P — _),,1],75_, (81)
! .

which one obtains from equation (19) after multiplying by «; and averaging. The two
defining scalars of s;; are, therefore,

— (D, +D,)py =yl and D, (r2D,+1uD,+2) py+yh +yD (1ply). (82)
Returning to equation (65), and considering the tensor,
S S (2)
%w'ul——ﬂjﬁ’ui _ % 0L, (83)
J J .

and reasoning as in the case of s;; (though in this case some additional care is necessary since
the tensor (83), in contrast to (69) is, per definition, solenoidal in its ﬁrst index) we find that
1ts defining scalars are:

(WD, 4D, pytyly and DD, D+ 2) vl Dyl (84)
Finally, combining (82) and (84), we obtain for S;; the defining scalars
§) =—2(muD,+D,) lI—2yA (85)
and Sy = 2D (12D, +1uD ,+2) 11 +2yA+2yD (ruA). (86)
The explicit form of the equations governing @, and @, are, therefore,
J
% _o(uD, +D,) TT—2yA+20A, @, (87)
and % = 2D (rzDr+r,dDﬂ—|—2) II+2yA+-2yD (rul\) +2v(A; Q3 +2D,, Q). (88)
Equations governing IT and P can be obtained by combining equation (81) with the
similar one, AL
VPP = +yA, ) (89)
| i
which one obtains by multiplying equation (19) in the primed variables by #; and averaging.
Thus, we find
> I\, on 0L,
V2II; = —yd; 55 P, and V2P, =— Afag (90)
In terms of defining scalars, the foregoing equations are equivalent to (cf. equation (80))
Al =—y(muD,+D,)A and AP =—y(uD,+D,)L. (91)

47-2
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368 S. CHANDRASEKHAR ON

It can be verified that for bounded functions I and A vanishing at infinity, the solution of
the equation for II can be expressed in terms of an arbitrary (bounded) function Y in the
form (cf. equations (47), (55) and (56))

D, 11 =—(wuD,+D,) Y (92)
and D, 1+yA =+ (2D, +muD, +4) Y. (93)
And eliminating II between these two last equations by reductions analogous to those
employed with respect to equations (55) and (56) (cf. equations (61) to (63)) we obtain
A, Y =9yD,A. (94)
The equation for P can be similarly reduced.
Using equations (92) and (93) we can simplify the right-hand side of equation (87). Thus,
(ruD,+D,) H+yA =D, 114 (D, I1+yA)
= —ru(ruD,+D,) Y+ (D, +muD ,+4) Y
— [(1—2) D, +4] ¥, (95)

and we can write Q{% = —2[r2(1—u2) D,+4] Y+ 20A; Q,. (96)

Collecting the various equations, we have the following set of equations governing the
scalars defined in table 1:

92 — 2| 4| [(1—?) D,+2] A+2cA,, (97)

A
57 = X1 @+ (k+v) Az A, (98)
20— o1 -2) D, +4] T+, Q, (99)

?

~—3Q-t—2 = 2D ,[(m*D,+2) H-l-’ﬂ(]f)ﬂ H+yA) ]+ 2y A+2v(A; Q:+2D,, Q1) (100)
D,® =~ (1D, +D,) X, D,®+y® = (*D,+mD,+2) X, (1o1)
DIl =— (D, +D,) Y, D,Tl+yA= ("D, +muD,+4)7, (102)
A X=yD,0, A, Y—yD,A, (103)
%: (k+v) AL and AP = —y(muD,+D,) L. (104)

5. THE RATES OF CHANGE OF THE MEAN SQUARES OF THE VELOCITY
COMPONENTS AND THE TEMPERATURE FLUCTUATIONS

The scalars @, @5, A, P, X and ¥ are even functions of r and x while L, ® and IT are odd
functions of » and g (cf. table 1). For small values of r we can therefore assume series expan-
sions of the forms:

Q1 = g+ 12 (2pg g t?) + .., Q2 = Poo+7*(Bog+Foak®) + ...,
O = oo+ 72(0op+050p%) + ..., A = oo+ 72 (Ao +Ag0p®) +- ...y (105)
X = x00+rz(x02—|—x22,u2) 4 Y = yoo+7*(Yor +Yaatt®) + ...,

I = rpwgy+rPu(@op + oo fi?) + .oy @ = 1By +r3u(bog + Poaté®) + ..
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TURBULENCE CAUSED BY THERMAL INSTABILITY 369

The correlation of the various field variables, with one another, at the same point and their
rates of change are related to the coefficients in the foregoing series expansions. Thus, the
mean square velocities «? and #? parallel and perpendicular, respectively, to the direction
A are given by (cf. A.T. equations (108))

uf =—20y and uf = - (2090 +Fo0) 5 (106)
and the mean square velocity #? is given by
u? = uf+2uf = —2(3atge+Foo)- (107)
Also, from the definition of O(r, #) as 66’ it follows that
02 = Oy, (108)
The meaning of the coeflicient A, in the expansion of A is also of some interest. By
definition 304 +05) = — (D, +D,) A&+ (12D, +ruD, +2) AL, (109)
For u; = u in the direction of A, A, = 1 and we have
Y0, +0) — — (1D, +D,) AL, + (PD,+muD,+2) A. (110)
Letting r— 0 in equation (110), we find ‘
Ouy = 21g0. (111)
An alternative form of this last\equation is
2ykan = gy = — 4 s (112)

where Jp denotes the fluctuation of density from the local mean value. Since a positive dp
at a point implies that the material in the neighbourhood will have a tendency to sink and
a negative dp implies a corresponding tendency to rise, there will be a negative correlation
between dp and u,; Spu, will, therefore, be negative and A,, will be positive. Moreover, it is
clear that 2yA,, represents the rate of liberation of potential energy, per unit mass, by the action of
gravity. ’

The equations governing the rates of change of the mean square velocity components
and temperature fluctuations can be obtained by inserting the expansions (105) in equations
(97) to (102). In this manner we obtain '

Xog+Xag = — P, YorTY22 = —Tpy,

Boo+ 7000 = 2%95 Woo ‘H”Ioo = 44,

(113)
Boa+ 7005 = 4%, woz‘*‘)”loz = 6409
3Pag+ 705y = 499,  BTyy YAy = 6Yyy,
déd
and ——dT?O = 4| f| Ago+ 2k (6045 +20,,), (114)
da
“d‘ggzxoo_lﬁlo‘oo+(’<+") (1025, +24,,), (115)
Lo sy +20(102y, 1 23), (116)
dBoo

dr 6@+ 4yAgo+20(10f gy + 205y -+ 4atsy) . (117)
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370 - S. CHANDRASEKHAR ON
In terms of u? and «? equations (116) and (117) take the forms
1du?
?(%“ — 2ydgy -+ 249 — 20(1 0ty -+ 20ty) (118)
d -
and a‘t(uﬁ“ug) = 6@+ 4yAgo+ 20 (10802 + 2050 + 4aiz) 5 (119)

where in equation (118) we have replaced 8y,, by 2yd,,+ 2@, in accordance with (113).
Eliminating du?/df from equation (119) we find

du?

- —2w9— 40(10agy + 4009+ 5f55+f135) (120)
Substituting for 2y1,, from equation (112) we can rewrite equation (118) in the form
1du? —
é_d—t“ = ~—p%é‘pu,,+2w00—2v(10%2+2a22). (121)

‘Combining equations (120).and (121) we obtain the equation governing the rate of dissipa-
tion of kinetic energy:
1du?
2.dt
Comparing equations (120) to (122) with A.T. equations (125) and (126) we observe that
the terms proportional to v are exactly the same in these equations. This agreement (which
is clearly necessary) enables us to interpret equations (120) to (122) in the following manner:
The rate of change of the mean square kinetic energy in the direction parallel to 2 is the net
result of the increase consequent to the release of potential energy by the action of gravity,
the decrease consequent to the transfer of energy from this direction to the perpendicular
direction by the action of the pressure term in the equation of motion and the decrease con-
sequent to the dissipation of the energy by the action of viscosity. There is no net gain in the
~ kinetic energy perpendicular to A by the action of gravity; whatever gain there is, is due to
the transfer of energy from the parallel component by the action of pressure. And finally,
the rate of increase of the total kinetic energy is entirely due to the balance between the
energy released by the work done by gravity and the energy lost by viscous dissipation. It
would appear that equations (120) to (122) express results which have been derived
differently by Richardson (1920) in his considerations relating to the supply of energy to
atmospheric eddies.
Turning next to equation (114), we can rewrite it in the form (cf. equation (108))
dg* P
dr = 2| B | Ouy+26(600p -+ 205,). (123)

This equation expresses the balance between the amounts of heat brought into an element
of volume by turbulence and that diffused out by conductivity (cf. Corrsin (1951), where
the fluctuations of temperature in homogeneous isotropic turbulence is considered).

1d 5 e
= Qa“t(”le+2”%) = —’;%3/1“11 — 4v(15055 + 50tgy + 502 -+ Faa)- (122)

6. THE EQUATIONS GOVERNING STATIONARY TURBULENCE
In the remaining part of this paper we shall suppose that the field of turbulence is
stationary. In assuming this, we have in mind the following situation: An external agency
maintains a constant mean adverse temperature gradient — | £ |; in order to maintain this
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TURBULENCE CAUSED BY THERMAL INSTABILITY 371

gradient energy must be supplied at a constant rate as was the case, for example, in the
experiments of Schmidt & Milverton (1935) and Schmidt & Saunders (1938). When an
adverse temperature gradient is maintained there will be turbulence and all the field quan-
tities will be subject to fluctuations; but under stationary conditions the statistical pro-
perties of the fluctuations described, for example, by the various correlation functions and
their defining scalars will be constant with time. In particular, the mean square velocities
parallel and perpendicular to the direction A will be constant with time; we can then
conclude from equations (120) to (122) that

“/7‘%; Opuy+ 200y = 20(100gy+2y), —2gy = 40(100gy+ 4oy +500s+Fpy)  (124)
and 2y = —;%(?—pu—” = 4v(1500,+ 505+ 5045+ fa3) - (125)

Equation (125) states that under stationary conditions the rate of dissipation of kinetic energy by
viscosity is exactly the same as the rate of liberation of potential energy by gravity. This is an im-
portant respect in which the theory of stationary turbulence developed on the premises
of this paper differs from the theory developed in connexion with Kolmogoroff’s theory of
local isotropy. Thus, when translating the equation of von Karman & Howarth into the
framework of local isotropy (cf. Batchelor 1947) one does not set dQ /9t = 0 (where @ is the
scalar defining under conditions of isotropy the tensor ZZZ;J’) ; one sets it equal to 1¢ where ¢
is the (assumed) constant rate of dissipation of energy by viscosity. The reason why one has
to do this is that in the usual manner of formulating the equations of the problem, the source
from which turbulence derives its energy is not included or specified in detail; but one
supposes that by restricting oneself to ‘eddies small compared with the largest present’
one can avoid specifying it and introduce the constant rate of energy supply, ¢, as a para-
meter of the problem. In our case we do not need to do this, since by assuming that a (con-
stant) mean adverse temperature gradient is being maintained we have in effect specified
the source of turbulent energy and included it in the equations.

According to the remarks of the foregoing paragraph we can obtain the equations
governing stationary turbulence by setting the time derivatives of all the scalars equal to
zero. We thus obtain from equations (97) to (104) the following system of equations:

kD3O =—|f | [*A(1—p*) D,+-2] A, (126)

(k+v) AsA=|F]| Q,— X, (127)

vA;Q, = [r*(1—2) D, +4] 7, (128)

A X =D, 0, (129)

A, Y =yD,A, (130)

D,® = —(uD,+D,) X, D,®+y® = (D, +mD,+2) X, (131)
DMl =—(muD,+D,) Y, D,T+yA= (2D, +muD,+4)7, (132!
D,[(*D,+2) T+ 1u(D, TT+yA)] +yA+v(A; @, +2D,, Q;) = 0, (133)

(Kf{—V) A;L=0 and A;P=—y(uD,+D,) L. (134)
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It should be emphasized that our present reasons for setting the time derivatives of the
various scalars equal to zero are entirely different from those of Rayleigh and Jeffreys for
setting d/dt = 0 in their discussion of the stability problem. As has been explained, especially
by Jeffreys (1926, 1928), the arguments for their setting d/d¢ = 0 in the equations of motion
and heat conduction are based on the principle of ‘exchange of stabilities’ according to
which, situations in which small perturbations are amplified with time and situations in
which they are damped with time form a ‘linear sequence’ separated by situations in which
marginal stability obtains and d/dt = 0. Conversely, it follows from these same arguments
that Jeffreys’s differential equation (22) is strictly limited in its application to only those
situations which are in marginal stability. No such limitation restricts the application of
equations (126) to (134) since no considerations of stability are involved in setting the time
derivates of the scalars equal to zero.

7. THE REDUCTION OF THE EQUATIONS OF STATIONARY TURBULENCE

In this section we shall derive by successive elimination a single differential equation of
the sixth order governing A. We shall also obtain some general integrals of the equations
(126) to (134). :

First, we may observe that according to equations (134) both L and P should vanish
identically. This follows from the fact that Lsatisfies Laplace’s equation (in five dimensions) ;
it must therefore vanish if it is bounded everywhere and tends to zero at infinity; P then
satisfies Laplace’s equation and by the same arguments it must also vanish identically. Thus

L=P=0; (185)
therefore, in stationary turbulence (cf. table 1)
Ou] = 0u; and wu, ——ao'u, (136)
and A, =04, and I, = ou. (187)
Now apply the operator A; to equation (127 ) and make use of equations (128) and (129).
We obtain (k9) AZA = | B Ay Q, —
———l’;ﬂ[rz(l——ﬂ?) D,+4]Y—yD,0. © (138)
Apply A; once more to this equation. Then
(k+v) A?,A:l——’f—'A5[72(l—ﬂ2) D,+4]Y—yA;D,0. (139)
The terms on the right-hand side of this equation can be simplified by making use of the
identity AD,=D,A, , (140) -

which follows from the definitions of these operators. Thus,
yA; D, 0 =yD,A; 0 :—MI?'ZD,[W(L—/;?) D,+2] A, (141)

where we have made use of equation (126). Remembering that D, permutes with any
function of 74 (A.T., equation (9)) and that, as operators,
D, r? =1r*D, 42, (142)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 373
we can rewrite equation (141) in the form
yAD,0 = =217 D 21— 0) ). (143)
Considering next the first term on the right-hand side of equation (139) we have (cf. equa-
tions (140) and (142))
(1 —2) D, +4] ¥ = A;D,[P(1—4?) Y] +2A,7
= D, Ay[r*(1—p2) Y] +2A; Y. (144)
Writing A; in the form, A;= D (ruD,+D,)+D,(r*D,+muD),), (145)

and remembering that ruD,+ D, permutes with any function of r2(1 —u?) (A.T. eduations
(18) and (19)) and D, permutes with any function of 7x, we find on making further use of
(142), that

AGl2(1—4?) ¥] = D, [2(1—?) (uD,+ D) Y]+ D,[#*(1—p2) (2D, -+ uD, +2) ]
= 72(1 —u?) Dﬂ(i’ﬂDr—I—D‘u) Y—2mu(ruD,+D,) Y
+7r*(1—p2) D,(r*D,+muD,+2) Y+2(r*D,+rmuD ,+2) Y
=21 =) A Y +2r2(1—p%) D, Y -4Y

— 2(1—p2) A, Y +47. | (146)
- Hence Ay[2(1—p?) D, +4]Y = D,[7?(1 —p?) A; Y]+4D, Y +2A, Y
| — D[2(1—?) A, Y] +2A, Y. (147)

Now réplacing A, Y by yD, A in accordance with equation (130), we have
As[r*(1—4?) D, +4] ¥ = yD,[r*(1—?) D, A]+2yD, A
= 7D, [r*(1—p?) Al. (148)
Finally, combining equations (139), (143) and (148) we have

(c+0) A= |81y (242 D, 1r2(1—2) A, (149)

or AA = 'LZJ—YD,,,[rZ(l —2) A]. (150)

This is the required differential equation for A. The similarity of equation (150) with
Jeffreys’s differential equation (22) (and in particular the occurrence of the five-dimensional
operator A; in place of the Laplacian VZ) may be noted.

Some further integrals of equations (126) to (129) may now be derived. Comparing
equations (143) and (150) we have '

yA; D, 0 = —vA3 A, (151)
or As[yD, ®+vAZ Al = 0. (152)
If the quantity in brackets is bounded and vanishes at infinity, it must vanish identically.
Hencé (cf. equation (129)) VA%A — 9D, 0 ——A.X, (153)
or A[rAs A+ X] = 0; (154)

VoL. 244. A. ‘ 48
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and by the same arguments as before
X =—vA;A. (155)
Substituting this last relation in equation (127) we find that
|A] Q1 = kA5 A; (156)
therefore Q, = “T?!C—IT)X' (157)

It is evident from the foregoing reductions that once equation (150) for A has been solved,
the solution for the other scalars can be found successively.

8. THE EXPRESSION OF /A IN TERMS OF (),
The equation, A A = —UZJ Q1 (158)

derived in the preceding section (equation (156)) is Poisson’s equation governing an axially
symmetric distribution of matter in a five-dimensional Euclidean space. Since in a five-
dimensional space the Newtonian potential 1/ris replaced by 1/373, we can write the general
solution of equation (158) in the form

- SIfZLfffffl rl Isdxl dxy dag duxf dg, (159)

where r denotes the radius vector in the five-dimensional space (3, ..., #;) and the integra-
tion is extended over the entire space. Using polar co-ordinates (for the notation see
Chandrasekhar 19506, equation (14)) and remembering that in the case on hand both
A and @, are functions only of 7 = |r| and § (= cos™' ) we can rewrite equation (159)
in the form | '

A = Siszf fﬂfﬁf ﬂfo | r—; 2 l3r'4 sin® ' sin?g; sin g, dr’ d¢’' dg; dg, dd;. (160)
The integrations over ¢, and ¢; are readily performed and we are left with
IQi;lf fﬂ ﬂl r—r Isr’4sm3 0" sin? ¢y dr’ Ao’ dg. (161)

We now expand |r—r’|~% in terms of the Gegenbauer polynomials C% (cos ®), where ®
denotes the angle between the directions speciﬁed by (4, 0) and (¢',¢;):

1

[r—r' 3 Z Cy(cos @) xm (162)

where 7is the larger of rand 7" and x = r/r’, or r /r, whichever is less than one. Inserting (162)
in (161) and using the relation given in Watson (1944, p. 369) we obtain

A ==L @ a-wn 5 S B e cawymar aw. 1oy

Without loss of any essential generality, we may suppose that @,(r, #) can be expanded as
a series in Gegenbauer polynomials C,,(#); however, since @, is required to be an even
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function of 7 and y the expansion will contain only the even order polynomials C%,(x).
Let, therefore,

Q) = 3 QE(r) Chula)- (164)
Introducing this expansion in (163) and using the orthogonality property of the Gegenbauer
polynomials (cf. Sommerfeld 1949, p. 232) we find:

' Iﬂl CZ” (2n) 2n
Alrp) = =15 3 G0 f Qo () Ly xn (165)

or, somewhat more explicitly,

Ay =151 nzogi" fi N ) ar s [ e Yrmsar]. (160

Equation (166) expresses A in terms of Q.
Setting 7 = 0 in equation (166), we obtain

_1A] 1Bl
A(0) f Q,(r)rdr = —_f f Q,(r, 4 rdr da. (167)
6k JoJ -1
Since the constant rate of dissipation of energy per unit mass is given by 2y A(0) (cf. equation

125)), we can writ .
(126)), e can wrlte 'ﬁ”jj ' Q.(r, ) rdrd. (168)

According to equation (166) the angle independent term, Ay(r) in the expansion of
A(r, p) in Gegenbauer polynomials is given by

Ayr) = —lgi;{'{ f "QUr)r dr g f 0 Q') 't dr’} . (169)
From this equation it follows that if Ar*—0 as r—o0, then
f T Qo) rdr = o. (170)
0

This is a kind of Loitsiansky invariant for the problem on hand. This may mean that under
the conditions in which we are discussing the problem (and in particular in consequence of
the neglect of the inertial term in the equation of motion) the turbulent energy is not
stored, principally, among the very large eddies as is generally assumed to be the case.

9. THE FUNDAMENTAL SOLUTIONS OF EQUATIONS (126) To (133)

As we have seen in § 7 the solution of the system of equations (126) to (133) can be reduced
to that of the single equation (equation (150))

MA=ET D fe0 )AL (171)

From general considerations it would appear that in the direction of A (z = 1) we should
be able to express A as a Fourier cosine integral (cosine integral since A is an even function
of r and ) in the form : -
Alr=z; u=1) =f0 L(a) cos azda. (172)

48-2


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

376 S. CHANDRASEKHAR ON

We shall accordingly seek a solution of equation (171) which is separable in the variables
z=ru and y=r(1—p?} (173)

and is, indeed, of the form A(r, ) = R(y) cos az, (174)

where R(y) is a function of y only. Once a solution of this form has been obtained, we can,
by superposing solutions with different a’s, obtain the general solution.

Inreducing the differential equation (171) when A has the form (174) and more generally
in the further treatment of the other equations of the problem, we shall find it convenient
to have for reference table 2 which lists the effects of the various differential operators of the
theory on functions which depend only on yor z. And using the results of this table we may
verify that _

A, R(y) Z(2) = [D,(uD,+D,) + (r*D,+7uD,,+n—1) D,] R(y) Z(2)

_Z"R+Z(R"+”y2R). | (175)

TABLE 2. THE EFFECTS OF THE VARIOUS DIFFERENTIAL OPERATORS
ON FUNGTIONS DEPENDING ONLY ON ) OR Z

’

D, Z(z) =0 D,R(y) = —
D,Z(z) =Z' : D,R(y) = — ; R
(ruD,+D,) Z(z) = Z' (ruD,+D,) R(y) =0
("D, +1uD,) Z(z) = zZ' ("D, +ruD,) R(y) =yR’
A,Z() =2" AR =R+"2 R

(Primes denote differentiation with respect to the argument of the function: y in the case of R and z in
the case of Z.)

Similarly, we also find

D,[(1~#) R(y) Z(2)] = ZD,[D(*R)] = ZD,(Ry+2R) = Z(R'+ K. (176)

Returning to equation (171) and using the results expressed by equations (175) and
(176), we find that for A of the form (174), it reduces to

d2 3d \8 _|ply(d*  3d
(dy2+ydy ) R(y) = W(@E+§@)R(y) (177)
Now it may be readily verified that
(d2 +3 d)Jl(ocy_) _ __ale(ocy)
dy*  ydy/ oy ay

where « is an arbitrary constant and J; is a Bessel function (of the first kind) of order 1.
[It may be noticed that we have incidentally proved that (cf. equations (175) and (178))

N

(178)

cosaz = —(a2+aé)£o(6;‘—y)cos az. (179)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 377
More generally, it is true that |
Jn—l(ay) iaz — __ (2 2 Jn—l(gy) iaz .
A2n+1W €* = —(a’+a?) ()" € (180)]
From equations (177) and (178) it follows that
_ Ji(w)
R(y) = T
is a solution of equation (177) provided (cf. equation (27))
|Bly _ (a407)?
=S (182)

For a given a? the roots of this cubic equation for «? can be expressed parametrically in the
form (cf. Low 1929 and Hales 1937)

|Bly _ (+3)° ,

KV 54(02—1)2a (183)
@ 4 a (¢c—1)2 af  (c+1)?
a2 21" a® 2(c+1)” a® 2(c—1)’ (184)

and

where ¢ is a pure number. On examination it is-found that the ranges¢ =c0 t03,c =3to 1,
¢=1t00,c=0to —1,c =—1to —8 and ¢ = — 3 to — co give the same set of roots (though
they are permuted among themselves). Without loss of generality we may, therefore, restrict
¢ to the range 3<<¢<<co. With ¢ thus restricted, ¢? and o} are positive while a2 is negative.
The solutions derived from this last negative root of «? cannot be used since the (modified)
Bessel functions /; and K, have singularities: the former at infinity and the latter at the
origin. For the same reason the solutions ¥, for the positive roots ¢? and a cannot also be
used. The general solution of A of the form (174) is, therefore, given by

2
A(r,p) = :Z K,‘—]—I;(@} cos az, (185)
. ) i=1 i
where, for brevity, we have written '
=0y (=12) (186)

and K, and K, are two arbitrary constants.
In table 3 we have listed the values of a?/a?, a}/a® and | £ | y/kva* for various values of ¢.

TasLE 3. THE ROOTS OF THE CUBIC EQUATION (182) FOR a2

¢ afla? ala? | 8] v/Kkvat ¢ af/a? agfa? || ylkva

3-0 0-5000 0-5000 6-750 6-0 0-1143 1-786 12-11
32 0-4329 0-5762 6-796 6-5 0-09697 2-017 13-61
34 0-3788 0-6545 6-920 7-0 0-08333 2-250 15-26
36 0-3344 0-7348 7-105 7-5 0-07240 2-485 17-03
3-8 0-2976 0-8167 7-342 80 0-06349 2:722 18-94
4-0 0-2667 0-9000 7-621 85 0-05614 . 2-960 20-98
4-2 0-2404 0-9846 7-939 9-0 0-05000 3-200 23-15
44 0-2179 1-070 8-291 9-5 0-04482 3440 25-45
4-6 0-1984 1-157 8-675 10-0 0-04040 3-682 27-87
4-8 0-1815 1-245 9-087 15-0 0-01785 6-125 59-05
50 0-1667 1-333 9-528 20-0 0-01002 8:595 102-8

55 0-1368 1-558 10-74 25-0 0-006410 11-08 159-0
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With A given by equation (185), the corresponding solutions of the other scalars can be
found successively. Thus, from equations (155) and (157), it follows at once that (cf.

equation (179)) N Ji(n)
X=—vA;A= V{EKi(a2—[—oc,2) —1—”»71’—} cosaz

iz1 s

and Q, = : > K (a®+a?) Sy (77")} cos az.

|:5| ;

Next, we determine ® from equation (153). Thus
2
D, 0O = —KAgA = —K{ > Ki(a2+oc,-2)2—‘]—1@~"—)}cos az.
4 V=1 N
On the other hand (cf. table 2)

— 1d _ i)
D, Jy(ay) cos az = cos azga;Jo(ay) =—0 are

Hence the solution for ® is
2 K.
0213 S @ra)r ) cosaz,

i=10
or using equation (182) we can rewrite it in the form

o-l1[3 K

az—l—az

0(771)} cos az.

To determine Y we use equation (130). Thus

2 el 4 Al
A Y —yD. A — {
7 7r )’izl d771

_7{ > Ko? J2’7(771)} cos az.

i=1 z

(. )} cosaz

On the other hand (cf. equation (180))

G y)cosa = —(a®+a? <y)coa
A () o802 = — (@) g e cosaz.
2 K,o? J(’fz)

Hence the solution for Yis ¥ = 7{121 PR }cos az.

Now combining equations (47) and (191) we obtain (cf. table 2)

2
A= av{ > %(dz—{—a,?)? J0(77,-)} sin az.
i=1%
But (cf. equation (180))
A J () sinaz = — (a?+a?) Jy(ay) sin az.

Hence D= —av{ e 5 (a2 +0af) Jo(ﬂl)} sin az.

=1

Similarly, from equations (91) and (185) we find that

= ~—ay{§ K Ty (”’)} sin az.

S taf

cosaz.

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)
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TURBULENCE CAUSED BY THERMAL INSTABILITY 379

It remains to solve equation (133) for @,. Using equation (132) we can rewrite equation
(133) in the form

—vA;Qy = D, (—y2D, Y +4zY +2I1) +yA+2vD ,, Q. (200)

Substituting for @,, ¥ and II according to equations (188), (195) and (199) in the fore-
going equations we find after some lengthy reductions that

2a%a?

_VA5Q2_)/2K{ @ a2)2+1:| 1(7) cosaz

e Jy(ms) Jy(7;) ]
2 1\'lq 2 1\i/
—I-a2 +ai2|: a%Jy(n;) cos az—2aa , =M zsinaz+of P cos az
of [(Salm) 2 J (:) 2 J,(n) ,
a2+oc,-2|:( 27722 “Ira 3;7? )zzcosaz—l-m—zmT(2azs1naz—cosaz):|}. (201)

The right-hand side of equation (201) can be expressed as the result of operation of A; on
a known function. For this purpose we need the following relations which can be established
in a fairly straightforward manner:

A, Jo(@) cosaz — l:__ (a®+a?) J2(%9) + 202 ‘](3(“@] z2cosaz

(a)? (az)?
—2 ( (y)y ) (2azsin az—cos az),
L (202)
Ay Jo(ay) cosaz = — (a®+a2) Jy(ay) cos az— 2“2__1‘%@ cos az,
A5%%y—)zsin az = —(a®+a?) —JIT(;@ zsin az+2a1]—1&((]—@cos az.

Using these relations and also (179), we find that we can reduce equation (201) to the form

_ K; _ +J2(m) s 2J1(77i) :
_VA5Q2~71§1 (az—l—oc,~2)2A5{ oci——«”Z z2 cos az+ 2a0 . zsinaz

/ — (a%*+20?) 1; )cos az—+a%J(n;) cos az} (203)
Hence the required solution for @, is

Qy=— I_/ﬂ Z — (a2 +a?) {azJ (n;) cos az— (a®+ 2a3) Sy 7;’7’) cosaz

-+ Qaazz—&@z sinaz— oc;‘—zﬂ(z”—i) z%cos az} , (204)

where we have further replaced y/v by (k/|f|) (a>+0a?)3/a? in accordance with equation
(182).

This completes the solution of equations (126) to (133). As for equations (134), we have
already seen that both L and P are identically zero (equation (135)).

10. THE CORRELATION TENSOR sz, THE MEAN ENERGY OF TURBULENCE, AND THE
DISSIPATION BY VISCOSITY

Explicit expressions for the coeflicients of the correlation tensor (cf. A.T., equation (48)),
Qy = AL&;+ B0+ CA;+ D (64, +4,8)), (205)
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can be found by inserting in A.T., equations (50), the solutions (188) and (204) for @,
and @,. Thus, we find after some lengthy reductions that

4= wm {2 K,(a*+af) 277(:7’)}cos az,

B = +-~/—% az{zz1 ]—g (a?+a2) 1757i)}c0s az,

C= -—7—% éKi(aZ+a§) {Qa‘—]lﬂ(;]i)-z sinaz L (206)
+[a2r2J277(1277)+g;J0( ) — (2—}— )JI;”’) +J,( 77,)] cos az}

D=+ lﬂlzzK( a?+a?) {az Zfi(ﬂz)zcos az+a 177(:7’) sin az} J

A quantity of some interest is the correlation u,(0) u;(z) of the velocities parallel to A at
two points vertically above one another and at a distance z apart. This correlation can be
found by setting 7 = (no summation), 4, = 1, ¢, = z and # = 1 in equation (205). Thus

u”(O) u’”(Z) = [AZZ+B+C+ 2Z.D]ﬂ= 1, r=z° (207)

Evaluating the quantity on the right-hand side in accordance with equations (206) we find

the simple result:
’ u,(0) u)(z) = l/ﬂ{zK az—l—ocz)}cos az. (208)

It is thus seen that in seeking a solution for A of the form (174) and considering a super-
position of the solutions with different a’s we are, in effect, expressing the correlation

u#,(0) uy(z) as a Fourier cosine integral.
Setting z = 0 in (208), we obtain

@ =53 K (a*ad). (209)

The corresponding expression for the mean square velocity in the perpendicular direction
is clearly given by the value of the coefficient B at the origin; thus

2 a?
T Z:Ki(az—l—ac,?)&—z-. (210)
Hence (cf. equation (182))
=ls i (211)

Returning to the solutions (188) and (204) for @, and @,, we find that for »— 0, they
have the series expansions,

Q=5 S Ka +ap) 1= +htaar—an )+ ], ]

K 2 la* (212)
&=~ 3 Kia+ap) [ (55 -1) + {(%“?—'T‘%dz)+(%%az“ir“z2”;&§)ﬂ2}+-~:|~J
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TURBULENCE CAUSED BY THERMAL INSTABILITY 381

From equations (212) we can directly read off the coefficients «,q, £y, €tc., in the expansions
for @, and @, assumed in equations (105); and we can verify that the values of 47 and u?
given by equations (106) are in agreement with equations (209) and (210).

The constant rates of dissipation, ¢, and ¢,, of the kinetic energies parallel and perpen-
dicular, respectively, to the direction A can now be found in accordance with equations
(124). Thus, o2

€ = 2”(10“02+2“22) = 7’21 a2+a2> (213)
a2
61 = 4v(100g, -+ 4ayy +5f0s + fa2) = ?’zl a2—|—a2’ (214)
and : ¢ =¢+e =y K, +K,). (215)

This last equation for ¢ is in agreement with equation (125) since according to the solution
(185) for A, 2yA(0) = y(K, +K,) =e. (216)
The rate of transfer of kinetic energy from the direction parallel to A to the direction

perpendicular to A is given by — 2w, (cf. equation (124)) where @, is the coefficient of 7
in the expansion of I at the origin; and this according to the solution (199) for I is

— 2w, = a2 217
00 =

a2+cx2
We observe that, in agreement with equation (124), this is equal to ¢,. Also comparing
equations (211) and (214) we have

6, = — 2wy = vaiul. ’ (218)

In other words, the rate of dissipation of kinetic energy perpendicular to A is proportional
to the mean energy of turbulence (in a particular wave-length) and to the square of the
wave number of the ‘eddy’ in the A-direction. In homogeneous isotropic turbulence a
relation similar to (218) is valid for ¢; in the case on hand it is true only of'¢,.

Another relation of some interest which follows from the solution for the scalars given in
§ 9 is the proportionality of the mean energy of turbulence and the mean square fluctuations
of temperature: for, from equations (192) and (211) we obtajn

K vl

1£13
02 = 0(0) = ZZI e Rl (219)
An alternative form of this relation is (cf. equation (11))
d%p 7 a2l BlY
20°P _ 0005 _ 202 __ 2 2
g o G2a20% = y20? = v Pl (220)

Since this last relation is valid independently of « it follows that it is true quite generally,
i.e. for any superposition of the solutions.

11. THE WAVE-LENGTH OF THE SMALLEST EDDY PRESENT: THE
INITIATION OF TURBULENCE BY THERMAL INSTABILITY

As we have already remarked, the general solution of the system of equations (126) to
(133) can be obtained by superposing the solutions given in §9 for different values of a.
This procedure corresponds to a generalized Fourier analysis of the various correlation

Vor. 244. A. 49
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functions. Thus from the relation (208) it follows that the cosine transform of u,(0) %/(z)
is related simply to the manner in which the solutions given in §9 must be superposed to
obtain the general solution. Now an important consequence of the analysis of the preceding
sections is that in such a superposition we cannot include wave-lengths less than a certain
minimum value. For, writing equatiop (182) in the form

|Aly _ (@?a*+1)° ,
KV - a?la? ’ (221)
we conclude that l’i V”}%— , (222)

since, for positive x, (x+1)3/x has a minimum value, 27, which it attains for x = §. The
minimum wave-length which can occur in the superposition of the correlation functions is,

therefore, given by KV
4

Vika

The origin of this minimum wave-length in the theory becomes clearer when we observe
that according to equations (211) and (215) the necessary and sufficient conditions for the
dissipation by viscosity and the mean energy of turbulence to vanish are (i) K, = —K,
and (ii) «? = «f. The latter condition implies that (cf. equation (184) and table 3)

A4 — 1087 (223)

o} = o3 = %a®> and l—’—i—ll = 27 a4, (224)
We thus recover equation (222) as the condition for ¢ and u? to vanish simultaneously.

It will be noticed that equation (223) is identical with Rayleigh’s criterion (29).* The
reason for this exact agreement is that by making a Fourier analysis of the velocity field in
the case of marginal stability, Rayleigh effectively determined the minimum wave-length
for the fluctuations in the z-direction which is possible when a given mean adverse tem-
perature gradient is maintained; and since we are also making a Fourier analysis of the

correlation u,(0) u}(z) it is clear that periodicities incompatible with Rayleigh’s criterion
(29) cannot occur in the present analysis. An alternative way of describing the situation is
as follows: Consider an extensive medium (stratified in planes perpendicular to the vertical)
of depth H in which a constant mean adverse temperature gradient — | /| is maintained.
By Rayleigh’s criterion (2) (or correctly by the criterion derived from Jeffreys’s differential
equation (22) by satisfying the proper boundary conditions at the top and the bottom
surfaces of the fluid) there will be convection in the medium. Consider a portion of the
fluid far from the bounding surfaces so that the assumption of homogeneity may be approxi-
mately realized. Equation (223) would then apply and has the meaning that in a Fourier
analysis of correlations such as u,(0) «)(z) wave-lengths less than Amin cannot occur. Also,
for A = A,;, both ¢ and #? vanish. It is evident now that A, must agree with Rayleigh’s
criterion (29) (not (2)). On the other hand, the agreement of (223) with Rayleigh’s criterion
(29) should not be allowed to obscure the fact that the physical situations contemplated
on the two theories are entirely different. As we have already remarked the Rayleigh-

* Notice, however, that we are not comparing it with the criterion (2) given by Rayleigh for the stability
of a layer of liquid of height H.
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TURBULENCE CAUSED BY THERMAL INSTABILITY 383

Jeffreys theory applies only to the case of marginal stability; whereas, we are considering
the state of affairs when the criterion for stability given by that theory has been far surpassed.

We can now describe in general terms as to what will happen when, maintaining a con-
stant mean adverse temperature gradient, we gradually increase the depth, H, of a layer
of fluid; or equivalently increase the numerical value of the temperature gradient while
keeping the depth the same; in both cases the

217 pa (225)

Rayleigh number = e

is continually increased.

First, we shall of course have stability and the transport of heat through the medium
will be by conduction only. Then when marginal stability is reached with the passing of
the appropriate Jeffreys’s criterion we shall have convection with a cellular pattern. And
when the Rayleigh number is still further increased, more and more of the modes of motion
that can occur in an infinite medium will become possible and be excited. In the early
stages, i.e. soon after the critical Rayleigh’s number of marginal stability has been péssed,
the assumption of homogeneity will be far from being even approximately fulfilled : indeed
H = 1, already corresponds to a Rayleigh number = 1-05 x 10*. However, when the
Rayleigh number becomes sufficiently large, homogeneous axisymmetric turbulence of
the kind postulated will be approximated in a large part of the fluid. And we can then in-
terpret the criterion (222) by saying that under these conditions there will be a smallest size
for the eddies present corresponding to the minimum wave-length A, .

The foregoing description of the manner in which the statistical character of the tur-
bulence will become gradually established is in general agreement with the experiments
of Schmidt & Saunders (1938). It also explains why the transition between the ‘cellular’
and the ‘turbulent’ patterns of convection cannot be a sharp one and why it is only for
Rayleigh numbers larger than the critical one for marginal stability by factors exceeding
twenty that the random character of turbulence manifests itself.

12. THE TWO MODES OF TURBULENCE CAUSED BY THERMAL INSTABILITY

While the description given in § 11 of the initiation of turbulence by thermal instability
is in agreement with general ideas on the subject, the mathematical theory which has been
developed in the preceding sections is limited in its applications by the fact that the inertial
term in the equation of motion has been neglected. An essential element in all turbulence
phenomena, namely, the transfer of energy from one Fourier component of the velocity
fluctuation to another has been ignored. The linear character of the equations resulting
from this neglect of the inertial term implies that each Fourier component evolves in-
dependently of the others. Consequently, the energy appropriate to each wave number a
must remain indeterminate; and the distribution of energy with @ must also remain beyond
the scope of the theory On these grounds, we might have expected that a fundamental set
of solutions of equations (126) to (133) would contain a single arbitrary constant. Instead,
the solutions given in § 9 actually contain two arbitrary constants corresponding to the two
positive roots ¢ and ¢ of the cubic equation (182) for a2 The occurrence of these two con-

stants in the solutions implies that there are two principal modes of fluctuations for 1>,
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384 S. CHANDRASEKHAR
(for A = A, the two modes coincide). For these two modes of turbulence (cf. equations
(209) and (210)) | |
2 2 2 2
(@) —29<1 and (ﬂ) —9%> (226)
u¥1 a u¥ a

For sufficiently long wave-lengths, the kinetic energy of turbulence in the two modes will
be confined almost exclusively to the perpendicular or the parallel components of the
velocity. Itis remarkable that the theory should disclose the existence of two such essentially
dissimilar modes of turbulence without giving any indications as to the circumstances
under which the one or the other will prevail.

13. CONCLUDING REMARKS

In concluding this paper we may refer to the analogy (to which Low (1925) first drew
attention) between the conditions in a layer of liquid heated below and a liquid between
two coaxial cylinders rotating at different rates. The criterion for stability in the latter
problem was established both theoretically and experimentally by Taylor (1923). But it
was Jeffreys (1928) who provided the mathematical basis of Low’s analogy by showing that
the equations which govern the situations of marginal stability in the two problems are
very similar. On the basis of this analogy we may expect that the problem of the initiation
of turbulence in a differentially rotating medium can be treated by the methods of this
paper. The author hopes to return to this problem on a later occasion.
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